

Session Objectives

- Determine the big ideas of algebra
- Discuss the importance of teaching the basics of inequalities and functions (two High Impact Indicators)
- Connect inequalities and functions to real-world situations
- Share resources

0

The Magic of Algebra (What's the reason?)

Think of any number.

- Multiply it by 2.
- Add 4.
- Multiply by 3.
- Divide by 6.
- Subtract the number with which you started.

You got 2!

Explain with algebra why this works.

The answer is ...

Start with the expression that describes the operations to be performed on your chosen number, *x*:

$$\frac{(2x+4)\cdot 3}{6}-x$$

and simplify the expression. You'll end up with 2, regardless of the value of *x*.

GED TESTING SERVICE*

Why Use Magic Tricks or Puzzles?

- They are
 - Fun
 - Non-threatening
 - Motivational
 - Engaging
- Students begin to use algebraic thinking without knowing that is what they are doing.

Some Big Ideas in Algebra

- Variable
- Symbolic Notation
- Equality
- Ratio and Proportion
- Pattern Generalization
- Equations and Inequalities
- Multiple Representations of Functions

When teaching algebraic concepts, model using multiple representations

- Start with the concrete
- Represent problems using symbols, expressions, and equations, tables, and graphs
- Model real-world situations

• Complete problems different ways (flexibility in

problem solving)

Big Ideas Using Algebra Tiles

- Adding and Subtracting Integers; Zero Principle
- Modeling Linear Expressions
- Solving Linear Equations
- Simplifying Polynomials
- Solving Equations for Unknown Variable
- Multiplying and Dividing Polynomials
- Factoring Trinomials
- Completing the Square
- Investigations

Resources

 Factoring Polynomials Using Algebra Tiles - Del Mar College

http://dmc122011.delmar.edu/math/MLC/QEPMathSeminars/FactoringTrinomialsAlgebraTilesStudentActivity.pdf

 Multiplying Polynomials Using Algebra Tiles – Virginia Dept. of Education

http://www.doe.virginia.gov/testing/solsearch/sol/math/A/mess a-2b 2.pdf

17

Algebra Tile Apps

 Illuminations (National Council for Teachers of Math) http://illuminations.nctm.org/activity.aspx?id=3482

Michigan Virtual University
 http://media.mivu.org/mvu pd/a4a/homework/index.ht
 ml

 National Library of Virtual Manipulatives http://nlvm.usu.edu/en/nav/vlibrary.html

Algebra Tiles A Brainingcamp, LLC Don't forget phone apps!

Inequalities Are Everywhere

Situation	Mathematical Inequality
Speed limit	Legal speed on the highway ≤ 65 miles per hour
Credit card	Monthly payment ≥ 10% of your balance in that billing cycle
Text messaging	Allowable number of text messages per month ≤ 250
Travel time	Time needed to drive from home to school/work ≥ 18 minutes

G E D

Recognize the Symbols and the Vocabulary

Term	Inequality
Coefficient	<mark>4</mark> a>8
Boundary Point	A solution that makes the inequality true
Solution Set	The range of values that make the inequality true
Inclusive	a ≤ 6
Exclusive	a < 6

GED

Rules for Solving Inequalities

- 1. Make the same changes to both sides of the inequality
- 2. Isolate the variable
- Combine like terms
- 4. Use the inverse operation to remove clutter from the variable
- 5. If your inverse operation is multiplication or division by a negative number, reverse the inequality sign
 -

 becomes >
 - > becomes <
 - ≤ becomes ≥
 - ≥ becomes ≤

25

Properties of Inequalities

Addition and Subtraction

If a > b, then a + c > b + cIf a > b, then a - c > b - c

Real-life situation

Becky is older than Janet: b > j Add 10 years: b + 10 > j + 10 Subtract 10 years: b - 10 > j - 10

Multiplication and Division

If a > b, then ac > bc, if c > 0If a < b, then ac < bc, if c < 0

Real-life situation

Becky is older than Janet: b > j

When they are twice their current age:

b(2) > j(2)

When they were half the age they are now:

$$\frac{D}{2} > \frac{J}{2}$$

But...there is one exception

If you divide or multiply -3n > 12 by a negative number

Reverse the inequality

symbol

Solution: all numbers n < -4

less than - 4

Resources

One-Variable Inequalities – Khan Academy

https://www.khanacademy.org/math/algebra/one-variable-linear-inequalities

Virtual Nerds: What is an Inequality?
https://www.youtube.com/watch?v=wcBwd
z-ZBaM

Very Basics of Graphing Inequalities (on a number line)

https://www.youtube.com/watch?v=nif2PK A9bXA

G E D

33

Resources

Math is Fun – Solving Inequalities
http://www.mathsisfun.com/algebra/ine
quality-solving.html

Solving and Graphing Inequalities (Excellent!)

https://www.youtube.com/watch?v=EE
2qWIyjKD0

Math Dude Unit 1-4 - Solving Inequalities

https://www.youtube.com/watch?v=8hh ewFQ K0w

G E D

What is a function? Looking Closer

A <u>function</u> is a relation in which each element of the domain is paired with <u>exactly one</u> element of the range. Another way of saying it is that there is <u>one</u> and only one output (y) with each input (x).

Real World - Is It a Function?

People and Social Security Numbers

Domain All people with a valid social

security number

Range All valid social security numbers

Is it a function? Yes

43

Real World - Is It a Function?

People and Phone Numbers

Domain All people who have a phone

Range Phone numbers of all people who

have a phone

Is it a function?

Vocabulary

X	у
Input	Output
Domain	Range
Independent Variable	Dependent Variable
X	f(x)

GED

Is it a function? Creating Input/Output Tables

$$\{(4,3), (-2, 10), (4, -6), (10,7)\}$$

There are two inputs that are the same number, but each has a different output. A relationship does not exist, so no, it is not a function.

Input	Output
X	у
4	3
-2	10
4	-6
10	7

47

Is it a function?

Which of the following relations are functions?

$$R = \{(9,10), (-5, -2), (2, -1), (3, -9)\}$$

$$S = \{(6, a), (8, f), (6, b), (-2, p)\}$$

$$T = \{(z, 7), (y, -5), (r, 7) (z, 0), (k, 0)\}$$

Is it a function?

<u>Vertical Line Test:</u> a relation is a function if a vertical line drawn through its graph, passes through only one point.

AKA: "The Pencil Test"

Lay the pencil perpendicular to the x-axis. Move the pencil **left to right (–x to x)**; if it crosses more than one point, it is not a function.

Back to Real-World Situations

Is it a function?

- The relation of distance and time during a trip.
- The relation of a month to the length of daylight.
- The relation of a person's shoe size to their height.
- The relation of amount of money earned and hours worked.

Instructions

- Using the sorting mat, categorize the cut-outs into those which represent functions and those that do not.
- Place the function cut-outs inside the circular section of the Venn Diagram.
- Place the non-functions outside the circular section of the Venn Diagram.

Evaluate the Function

Find f (-2).

To find f(-2) you need to substitute a -2 for every *x* value. Then carefully simplify using the order of operations.

$$f(x) = 2x^{2} - 3x + 6$$

$$f(-2) = 2(-2)^{2} - 3(-2) + 6$$

$$f(-2) = 2(4)-3(-2)+6=8+6+6=20$$

A Real-World Linear Function

A lawyer charges a base (one time) fee of \$200 and \$75 each hour for consulting with her. Calculate the total cost of the lawyer if you consulted with her for one, two, three, four, or five hours.

61

Remember Hartley?

a)
$$m = \frac{367 - 112}{5 - 2} = \frac{255}{3} = 85$$

b = 367 - 85(5) = -58

b)
$$y = 85x - 58$$

c)
$$y = 85(10) - 58 = 850 - 58 = $792$$

Resources - Beginning Looks

- Using a Lottery to Illustrate Functions -The Teaching Channel
- https://www.teachingchannel.org/videos/teachin
- g-functions?utm source=Alpha+List&utm campai gn=17fa2b7690-
- Speeding Along

http://www.floridaipdae.org/index.cfm?fuseaction=resources.GEDAHS&cagiid=A37BC967EEFD18737E7AC2AF2D8421DD4A11C694934330 A61EB65F4EB10E766B

What Are Functions? Math Antics https://www.youtube.com/watch?v=52tpYl2tTgk

Resources

Functions – Khan Academy

https://www.khanacademy.org/m ath/algebra/algebra-functions

What is a function?

https://www.youtube.com/watch? v=ryQJa8ybxVY

Math is Fun

https://www.mathsisfun.com/sets /function.html

Resources

Virtual Nerd

http://www.virtualnerd.com/

Illuminations

https://illuminations.nctm.org/

Algebraic Functions and Modeling – Steve Schmidt, Appalachian State https://abspd.appstate.edu/node/385

Tips for Teaching Inequalities and Functions

- Make it meaningful start with concrete examples and real-world problems
- Make your thinking processes visible
- Solve the problems many ways
- Show the application
- Provide time for discourse have students communicate their reasoning
- Ensure time for mastery of the basics

