Introduction to HigherOrder Algebra for Irevel 1 and Ievel 2 Students

```
A Workshop by GED Testing Service \({ }^{\circledR}\)
```


© Copyright GED Testing Service LLC. All rights reserved.

Session Objectives

- Determine the big ideas of algebra
- Discuss the importance of teaching the basics of inequalities and functions (two High Impact Indicators)
- Connect inequalities and functions to real-world situations
- Share resources

The Magic of Algebra (What's the reason?)

Think of any number.

- Multiply it by 2.
- Add 4.
- Multiply by 3.
- Divide by 6.
- Subtract the number with which you started.

You got 2!

Explain with algebra why this works.

The answer is ...

Start with the expression that describes the operations to be performed on your chosen number, x :

$$
\frac{(2 x+4) \cdot 3}{6}-x
$$

and simplify the expression. You'll end up with 2, regardless of the value of x.

Why Use Magic Tricks or Puzzles?

- They are
- Fun
- Non-threatening
- Motivational
- Engaging
- Students begin to use algebraic thinking without knowing that is what they are doing.

Some Big Ideas in Algebra

- Variable
- Symbolic Notation
- Equality
- Ratio and Proportion
- Pattern Generalization
- Equations and Inequalities
- Multiple Representations of Functions

Holding Algebra in Your Hands

Starting with the concrete by using algebra tiles

I'm still waiting for the day that I will actually use

When teaching algebraic concepts, model using multiple representations

- Start with the concrete
- Represent problems using symbols, expressions, and equations, tables, and graphs
- Model real-world situations
- Complete problems different ways (flexibility in problem solving)

Introduction to Algebra Tiles

Remember, they could be called $\mathrm{x}, \mathrm{y}, \mathrm{b}, \mathrm{t}$, etc.

10

What's My Polynomial?

Big Ideas Using Algebra Tiles

- Adding and Subtracting Integers; Zero Principle
- Modeling Linear Expressions
- Solving Linear Equations
- Simplifying Polynomials
- Solving Equations for Unknown Variable
- Multiplying and Dividing Polynomials
- Factoring Trinomials
- Completing the Square
- Investigations

Look at the Relationships among the Tiles

Let's Use Algebra Tiles to Multiply

 Polynomials$$
\text { Problem: }(x+2)(x+3)=?
$$

Step 1: Gather all the tiles you need for each term.

Multiplying Polynomials

$$
(x+2)(x+3)=?
$$

Step 2: Lay out the tiles on opposite axes of the algebra tile mat as shown below.

Multiplying Polynomials

$(x+2)(x+3)=?$
Step 3: Using other tiles, form a perfect rectangle using the tiles on axes of the product mat as the indicators for the dimensions of the rectangle as shown.

Notice that no other combination of tiles would make a perfect rectangle matching the dimension of tiles on the axes of the product mat.

Resources

- Working With Algebra Tiles - MathBits
 http://mathbits.com/MathBits/AlgebraTiles/AlgebraTiles.htm
- Factoring Polynomials Using Algebra Tiles - Del Mar College
http://dmc122011.delmar.edu/math/MLC/QEPMathSeminars /FactoringTrinomialsAlgebraTilesStudentActivity.pdf
- Multiplying Polynomials Using Algebra Tiles - Virginia Dept. of Education
http://www.doe.virginia.gov/testing/solsearch/sol/math/A/m ess a-2b 2.pdf

Algebra Tile Apps

- Illuminations (National Council for Teachers of Math) http://illuminations.nctm.org/activity.aspx? id=3482
- Michigan Virtual University
http://media.mivu.org/mvu pd/a4a/homework/index.ht
 ml
- National Library of Virtual Manipulatives http://nlvm.usu.edu/en/nav/vlibrary.html

Can your students ...

Solve inequalities in one variable, using the standard algorithms?

$$
\begin{aligned}
& \text { between the relationship } \\
& \text { real-world problities in a } \\
& \text { then create an inem, and } \\
& \text { to model the problem } \\
& \text { situatity } \\
& \text { an? }
\end{aligned}
$$

What is an inequality?

An inequality is a mathematical sentence that uses symbols such as $<, \leq$, $>$, or \geq to compare two quantities.

22

Inequalities Are Everywhere

Situation	Mathematical Inequality
Speed limit	Legal speed on the highway ≤ 65 miles per hour
Credit card	Monthly payment $\geq 10 \%$ of your balance in that billing cycle
Text messaging	Allowable number of text messages per month ≤ 250
Travel time	Time needed to drive from home to school/work ≥ 18 minutes

Recognize the Symbols and the Vocabulary

Term	Inequality
Coefficient	$4 a>8$
Boundary Point	A solution that makes the inequality true
Solution Set	The range of values that make the inequality true
Inclusive	$a \leq 6$
Exclusive	$\mathrm{a}<6$
24	

Rules for Solving Inequalities

1. Make the same changes to both sides of the inequality
2. Isolate the variable
3. Combine like terms
4. Use the inverse operation to remove clutter from the variable
5. If your inverse operation is multiplication or division by a negative number, reverse the inequality sign
```
< becomes >
> becomes <
\leqbecomes \geq
 becomes \leq
```


Properties of Inequalities

Addition and Subtraction

If $a>b$, then $a+c>b+c$
If $a>b$, then $a-c>b-c$

> Real-life situation Becky is older than Janet: $b>j$ Add 10 years: $b+10>j+10$ Subtract 10 years: $b-10>j-10$

Properties of Inequalities

Multiplication and Division

If $a>b$, then $a c>b c$, if $c>0$
If $a<b$, then $a c<b c$, if $c<0$


```
Real-life situation
Becky is older than Janet: b > j
When they are twice their current age:
b(2) > j(2)
When they were half the age they are now:
\frac{b}{2}>\frac{j}{2}
```

27

But...there is one exception

Testing the Property

$$
3>2
$$

Multiply by -1
$(-1)(3)>2(-1)$
$-3>-2$ FALSE
$-3<-2 \quad$ TRUE
Multiplying by a
negative flipped the inequality sign from "greater than" to "less than."

© Copyright GED Testing Service LLC. All

Graph the Solution

$$
x<8
$$

1. Draw a number line. Just need a few numbers on either side of the solution number.

2. Decide if open circle or closed circle. Place it above the solution number.
3. Determine which way your arrow goes by substituting a number in for the variable to make the statement true. Then draw the arrow pointing in that direction.

Sample Question from GEDTS

Resources

Math is Fun - Solving Inequalities
http://www.mathsisfun.com/algebra/ine quality-solving.html

Solving and Graphing Inequalities (Excellent!)
https://www.youtube.com/watch?v=EE 2qWIyjKD0

Math Dude Unit 1-4 - Solving Inequalities
https://www.youtube.com/watch?v=8hh ewFQ KOw

© Copyright GED Testing Service LLC. All

Can your students...

Identify functions and non(graphs/tables)?

> Convert functional representations from one from to another, and
> compare properties of the functions?

What is a function?

A function is a special relationship between a set of inputs and a set of permissible outputs. It is a useful mathematical tool.

© Copyright GED Testing Service LLC. All rights reserved.

What is a function? Looking Closer

A function is a relation in which each element of the domain is paired with exactly one element of the range. Another way of saying it is that there is one and only one output (y) with each input (x).

© Copyright GED Testing Service LLC. All

In order for a relationship to be a function . . .

EVERY INPUT MUST HAVE AN OUTPUT

TWO DIFFERENT INPUTS CAN HAVE THE SAME OUTPUT

ONE INPUT CAN HAVE ONLY ONE OUTPUT

OUTPUT (RANGE)

Is it a function?

Real World - Is It a Function?

People and Social Security Numbers

Domain
All people with a valid social security number

Range
All valid social security numbers

Is it a function?
Yes

43

Real World - Is It a Function?

People and Phone Numbers

$$
\text { Domain } \quad \text { All people who have a phone }
$$

Range Phone numbers of all people who have a phone

Is it a function?
No

Show Functions Four Ways

x	y
-4	-11
-2	-7
0	-3
2	1
4	5

Table
$y=2 x-3$
Equation
y is 3 less than twice a number x

Graph

45

Vocabulary

\boldsymbol{x}	\boldsymbol{y}
Input	Output
Domain	Range
Independent Variable	Dependent Variable
x	$\mathrm{f}(x)$

Is it a function?
 Creating Input/Output Tables

$\{(4,3),(-2,10),(4,-6),(10,7)\}$

There are two inputs that are the same number, but each has a different output. A relationship does not exist, so no, it is not a function.

Input \boldsymbol{x}	Output \boldsymbol{y}
4	3
-2	10
4	-6
10	7

Is it a function?

Which of the following relations are functions?

$$
\begin{aligned}
& R=\{(9,10),(-5,-2),(2,-1),(3,-9)\} \\
& S=\{(6, a),(8, f),(6, b),(-2, p)\} \\
& T=\{(z, 7),(y,-5),(r, 7)(z, 0),(k, 0)\}
\end{aligned}
$$

Is it a function?

Vertical Line Test: a relation is a function if a vertical line drawn through its graph, passes through only one point.

AKA: "The Pencil Test"

Lay the pencil perpendicular to the x-axis. Move the pencil left to right ($-\mathbf{x}$ to \mathbf{x}); if it crosses more than one point, it is not a function.

Vertical Line Test

Would this graph be a function? NO

Is it a function?

51

Is it a function?

Is it a function?

No

Back to Real-World Situations

Is it a function?

- The relation of distance and time during a trip.
- The relation of a month to the length of daylight.
- The relation of a person's shoe size to their height.
- The relation of amount of money earned and hours worked.
© Copyright GED Testing Service LLC. All

Instructions

- Using the sorting mat, categorize the cut-outs into those which represent functions and those that do not.
- Place the function cut-outs inside the circular section of the Venn Diagram.
- Place the non-functions outside the circular section of the Venn Diagram.

© Copyright GED Testing Service LLC. All rights reserved.

Evaluate the Function

Find $f(-2)$.

To find $\mathrm{f}(-2)$ you need to substitute a-2 for every x value. Then carefully simplify using the order of operations.

$$
\begin{gathered}
f(x)=2 x^{2}-3 x+6 \\
f(-2)=2(-2)^{2}-3(-2)+6
\end{gathered}
$$

$$
f(-2)=2(4)-3(-2)+6=8+6+6=20
$$

Types of Functions - The Next Step

Linear

Non-Linear

Quadratic

Logarithmic

A Real-World Linear Function

A lawyer charges a base (one time) fee of $\$ 200$ and $\$ 75$ each hour for consulting with her. Calculate the total cost of the lawyer if you consulted with her for one, two, three, four, or five hours.

Remember Hartley?

$$
\begin{aligned}
& \text { a) } \quad m=\frac{367-112}{5-2}=\frac{255}{3}=85 \\
& \text { b }=367-85(5)=-58 \\
& \text { b) } y=85 x-58 \\
& \text { c) } y=85(10)-58=850-58=\$ 792
\end{aligned}
$$

Resources - Beginning Looks

- Using a Lottery to Illustrate Functions The Teaching Channel
https://www.teachingchannel.org/videos/teachin gfunctions?utm source=Alpha+List\&utm campai gn=17fa2b7690-

Speeding Along
http://www.floridaipdae.org/index.cfm?fuseactio $\mathrm{n}=$ resources.GEDAHS\&cagiid=A37BC967EEF D18737E7AC2AF2D8421DD4A11C694934330 A61EB65F4EB10E766B

- What Are Functions? Math Antics https://www.youtube.com/watch?v=52tpY|2tTqk

Resources

Functions - Khan Academy

https://www.khanacademy.org/m ath/algebra/algebra-functions

What is a function?
https://www.youtube.com/watch? v=ryQJa8ybxVY

Math is Fun
https://www.mathsisfun.com/sets /function.html

Resources

Virtual Nerd http://www.virtualnerd.com/

Illuminations
https://illuminations.nctm.org/

Algebra Functions
and Modeling

Algebraic Functions and Modeling - Steve Schmidt, Appalachian State https://abspd.appstate.edu/nod e/385

Tips for Teaching Inequalities and Functions

- Make it meaningful - start with concrete examples and real-world problems
- Make your thinking processes visible
- Solve the problems many ways
- Show the application
- Provide time for discourse - have students communicate their reasoning
- Ensure time for mastery of the basics

© Copyright GED Testing Service LLC. All

