ipdae
 INSTITUTE FOR THE PROFESSIONAL
 DEVELOPMENT OF ADULT EDUCATORS

An Introduction to the ABE Mathematics Curriculum Matrix

Concept and Applications
www.floridaipdae.org

This training event is supported with federal funds as appropriated to the Florida Department of Education, Division of Career and Adult Education for the provision of state leadership professional development activities.

ipdae
 Agenda

I. The Purpose of the Matrix
II. The College and Career Readiness Standards
III. The ABE Mathematics Curriculum Frameworks
IV. The ABE Mathematics Curriculum Matrix
V. The Purpose of the Matrix
VI. Matrix Alignment to TABE 11 \& 12
VII. Various Matrix Overlays
VIII. The Interactive Online Curriculum Matrix
IX. Additional Curriculum Matrix Resources

Rationale
THE PURPOSE OF THE MATRIX

Challenges of Educators
Workbook p. 1

Adult Educators across the state are facing very similar challenges in the teaching of ABE Mathematics:

- Inconsistent background in math
- Unfamiliarity to certain math skills and concepts
- Limited understanding of the standards (CCRS)
- Lack of planning time
- Limited access to professional development
- Limited knowledge of math teaching strategies
- Limited resources for properly teaching math skills
- Massive and often multiple math content/curricula
- Catering to a very diverse group of students in terms of ability, background and goals
ipdae
Reflections of an Educator
Workbook p. 1
In terms of teaching math, a typical adult educator struggles with the following questions:
- Where do I start?
- Which skills and concepts do my students need more mastery? How do I know now? How will I know in the future?
- How much time do I have to teach this topic?
- What topics should I teach next? What is the end goal?
- Is this skill assessed on standardized tests? How?
- How much of this content is assessed on standardized tests?
- What is the best textbook out there? Or websites to use?

ipdae

The ABE Mathematics Curriculum Matrix helps adult educators deal with the challenges of their work and answer the most important questions to be more efficient in their practice.

The Teaching of Mathematics According to:

THE COLLEGE AND CAREER READINESS STANDARDS

CCRS

The Key Shifts in the Standards

1. Focus
2. Coherence
3. Rigor
a. Conceptual Understanding
b. Procedural Fluency
c. Application

ipdae

CCRS

Focus
Focusing strongly where the standards focus
Instructors need to:

- narrow significantly and to deepen the manner in which they teach mathematics
- focus deeply on the major work of each level
- select priority content which addresses clear understanding

CCRS

Coherence
Designing learning around coherent progressions level to level

Instructors need to:

- create coherent progressions in the content within and across levels
- establish strong conceptual understanding of core content
- use standards at higher levels as extensions of previous learning rather than signaling a new concept or idea

ipdae

CCRS

Rigor
Pursuing conceptual understanding, procedural skill and fluency, and application-all with equal intensity

Instructors need to:

- focus equally on conceptual understanding of key concepts, procedural skill and fluency, and rigorous application of mathematics in real-world contexts.
- teach more than "how to get the answer"
- employ concepts from several perspectives

ipdae

The Starting Point of the ABE Math Curriculum Matrix

THE CURRICULUM FRAMEWORKS

The ABE Mathematics Curriculum Frameworks

ipdae

Purpose

The Adult Basic Education (ABE) Program includes content standards that describe what students should know and be able to do in Mathematics. The content standards serve several purposes:

- Provide a common language for ABE levels among programs
- Assist programs with ABE curriculum development
- Provide guidance for new ABE instructors
- Ensure quality instruction through professional development
- Provide basic skills instruction (0.0-8.9) and critical thinking skills to prepare students for GED preparation (9.0 - 12.9), postsecondary education, and employment.

ipdae
 Purpose
 Workbook p. 2

The content standards should be used as a basis for curriculum design and also to assist programs and teachers with selecting or designing:

- appropriate instructional materials
- instructional techniques, and
- ongoing assessment strategies.

Standards DO NOT tell teachers how to teach, but they do help teachers figure out the knowledge and skills their students should have so that teachers can build the best lessons and environments for their classrooms.

Curriculum Frameworks

The ABE Mathematics Curriculum Frameworks

- 31 Pages
- 10 Mathematics Domains
- 79 Content Standards
- 294 Content Benchmarks
- 4 Career and Education Planning Standards
- 4 Digital Literacy (Technology) Standards
- 7 Workforce Preparation Activities
$=$

Curriculum Frameworks

The ABE Mathematics Domains

Domain	NRS Reporting	NRS Level 1	NRS Level 2 $2.0-3.9$	NRS Level 3 4.0-5.9	NRS Level 4 6.0-8.9
	Grade Equivalent (GE)				
1	Number and Operations: Base Ten	0.0-1.9	2.0-3.9	4.0-5.9	
2	Operations and Algebraic Thinking	0.0-1.9	2.0-3.9	$4.0-5.9$	
3	Measurement and Data	0.0-1.9	2.0-3.9	4.0-5.9	
4	Geometry	0.0-1.9	2.0-3.9	4.0-5.9	$6.0-8.9$
5	Number and Operations: Fractions		*3.0-3.9	4.0-5.9	
6	Expressions and Equations			4.0-5.9	6.0-8.9
7	The Number System			4.0-5.9	$6.0-8.9$
8	Ratios and Proportional Relationships			$4.0-5.9$	$6.0-8.9$
9	Statistics and Probability			4.0-5.9	$6.0-8.9$
10	Functions				*7.0-8.9

Curriculum Frameworks

The ABE Mathematics Standards

This formatting and arrangement of math standards and benchmark skills span 25 pages of the ABE Mathematics Curriculum Frameworks.

ipdaer

The ABE Mathematics Curriculum Matrix was developed directly from the ABE Mathematics Curriculum Frameworks released by the Florida Department of Education.

THE ABE MATHEMATICS
 CURRICULUM MATRIX

What are NRS Levels?

NRS stands for National Reporting System. The NRS divides Adult Basic Education into 4 levels:

- Level 1 - Literacy (Grade Equivalent 0 to 1)
- Level 2 - Beginning Basic (Grade Equivalent 2 to 3)
- Level 3 - Low Intermediate (Grade Equivalent 4 to 5)
- Level 4 - High Intermediate (Grade Equivalent 6 to 8)

Levels 5 and 6 are levels that belong to Adult Secondary Education (GED Prep):

- Level 5 - Low Adult Secondary Education (Grade 9-10)
- Level 6 - High Adult Secondary Education (Grade 11 - 12)

ipdae

Mathematics

ipdae

APPLICATIONS OF THE MATRIX

ipdae

Applications

- The matrix can be used in planning (daily, weekly, or by unit). Start with the upper leftmost content cell within each region of the matrix then teaching outwards to cover the entire region.

Domain	NRS Level 1	
	Place Value of 2 - init Numbers	$3 \text { Add and subtract } 2 .-\mathrm{Digit}$
1. Number and Operations: Base Ten	Compare 2-Oigit Numbers	Model Addition and Subtraction of 2-Digit Number
	-	
2. Operations and Algebraic Thinking		

Applications

- The matrix can be used to track class progress or individual student's progress, which is important in adjusting the pace of the lesson and design/selection or learning materials/activities.

ipdae

Applications

- The matrix can be used together with test results to map students strong and weak areas which could lead to developing class, small group or individual student learning profiles.

These group or individual student profiles also help in developing formative assessments to determine mastery of each standard.

ipdae

Applications

- The matrix can be used to emphasize big ideas or learning trajectories in the standards.

A learning trajectory is generally defined as a contentspecific learning path, a developmental progression, and/or a building of conceptual components.
G. Mojica (2011). A trajectory toward understanding. University of North Carolina Chapel Hill, School of Education, NC.
http://thewell.web.unc.edu/2011/10/31/trajectory-toward-understanding/

ipdae

Applications

- The matrix can be used to emphasize big ideas or learning trajectories towards GED High Impact Indicators and Performance Level Descriptors.

Q.4: Calculate dimensions, perimeter, circumference, and area of two-dimensional figures
Q.5: Calculate dimensions, surface area, and volume of three-dimensional figures

ipdaer

Applications

High Impact Indicators are skills/objectives that are useful for educators to emphasize in the classroom because they are essential for students in order to perform well on the GED Test.

- They represent particular foundational skills that are the basis for the development of other skills covered in the GED® Assessment Targets and have broad usefulness that can be applied in multiple contexts.
- They are a good fit for classroom instruction because they are not complicated but are important for students to know and use.
- GED® testing data suggests that educators may not be currently focusing on these skills in their GED® test preparation.
- Summarizes the ABE math standards in a more visual representation
- Shows an overall picture of the ABE math standards
- Shows the logical grouping and possible sequencing of the standards
- Emphasizes out how each standards relate to one another
- Organizes the standards in ABE levels across conceptual categories/domains
- Shows how much content/objectives are covered at each ABE level or domain

Benefits to the Teacher/Student

- Serves as a quick guide for teachers so that they are able to prioritize and differentiate teaching to the most important skills to adult students based on the student's ability, curriculum and standardized assessment.
- Enumerates every skill/concept/topic that has to be covered in the ABE Math Classroom.
- Highlights every standard that is tested in standardized assessments such as the TABE 11 \& 12.

ipdae

(B)

Aligning to Standardized Assessment Targets

TEST FOR ADULT BASIC
 EDUCATION (TABE) 11 \& 12

TABE $11 \& 12$

ipdae

TABE 11 \& 12

Comparing the Matrix to the TABE Assessment Blueprints

ipdae

Comparing the Matrix to the TABE Assessment Blueprints

	STANDARD	STANDARD DESCRIPTION	AE-CCR LEVEL	TABE 11/12 EMPHASIS LEVEL
	2.G. 1	Recognize and draw shapes having specified attributes, such as a given number of angles or a given number of equal faces. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.	B	Medium
	3.G. 1	Understand that shapes in different categories (e.g., rhombuses, rectangles, and others) may share attributes (e.g., having four sides), and that the shared attributes can define a larger category (e.g., quadrilaterals). Recognize rhombuses, rectangles, and squares as examples of quadrilaterals, and draw examples of quadrilaterals that do not belong to any of these subcategories.	B	Medium
	3.G. 2	Partition shapes into parts with equal areas. Express the area of each part as a unit fraction of the whole. For example, partition a shape into 4 parts with equal area, and describe the area of each part as $1 / 4$ of the area of the shape.	B	Low
	2.G. 3	Partition circles and rectangles into two, three, or four equal shares, describe the shares using the words halves, thirds, half of, a third of, etc, and describe the whole as two halves, three thirds, four fourths. Recognize that equal shares of identical wholes need not have the same shape.	B	Low

Comparing the Matrix to the TABE Assessment Blueprints						
5．Number and Operations： Fractions		$\begin{aligned} & \text { Represent Fractions with } \\ & \text { Denominators } 2,3,4,6 \text {, or } 8 \\ & \text { on a Number Line } \end{aligned}$	Recognize Equivalent Fractions on a Number Line	Use Visual Mo Represent Equ Fractions	Compare Fractions with theSame Numerator orDenominator	
	STANDARD	STANDARD DESCRIPTION			AE－CCR LEVEL	TABE 11／12 EMPHASIS LEVEL
	3．NF． 1	Understand a fraction $1 / \mathrm{b}$ as the quantity formed by 1 part when a whole is partitioned into b equal parts；understand a fraction a / b as the quantity formed by a parts of size $1 / b$ ．			B	Medium
	3．NF． 2	Understand a fraction as a number on the number line；represent fractions on a number line diagram．（3．NF．2．a，3．NF．2．b）			B	Medium
	3．NF． 3	Explain equivalence of fractions in special cases，and compare fractions by rea－ soning about their size．（3．NF．3．a，3．NF．3．b，3．NF．3．c，3．NF．3．d）			B	High

Thematic and Career Cluster Overlays

ADULT BASIC EDUCATION MATHEMATIC DOMAINS					
Domain Number	Overarching Theme: Geometry (Domain 6)				
	Domain Name	Starting with a Point	Lines	Planes	Space
1	Number and Operations: Base Ten	Whole Number Operations			
2	Operations and Algebraic Thinking			Properties of Addition and Multiplication (Area Method of Addilion and Multiplication)	Relating Volumes to Multiplication and Addition to Solve Real-World Problems
3	Measurement and Data		Representing and Analyzing Data (Line Plots)	Areas, Circle Graphs and Bar Graphs	Volumes and Surface Areas
5	Number and Operations: Fractions			Parts of a Whole and Unit Fractions	
6	Expressions and Equations	Expungling Expers ons ond Soll lians to linear Equations	Linear Equations and Equivalent Expressions	Squares, Square Rools and Simultaneous Linear Equations	Cubes and Cube Roots
7	The Number System		The Number Line and Number Operations		
8	Ratios and Proportional Relationships		Double Number Line Diagrams and Graphs of Proportional Relationship	Tape Diagrams	
9	Statistics and Probability		Box Plots and Measures of Central Tendency	Dot Plots (Scatter Plots) and Histograms	
10	Functions		Linear Functions		
		Business, Management and Administration	Communications and Information Systems	Engineering, Manufacturing and Technology	Food and Health Sciences
		Career Cluster			

ipdaer

Overlays

GED High Impact Indicators and Performance Level Descriptors

ipdae

VALUE TO PROGRAMS AND ADMINISTRATORS

ipdae
 For Programs and Institutions

- Standards-Based Instruction Initiatives
- Program Evaluation and School Improvement
- Teacher Observation and/or Evaluation
- Instructional Resource Alignment,
 Development and/or Evaluation
- Curriculum Planning and Pacing
- Professional Development
- Student Recruitment and Retention
- Teacher Empowerment and Retention
- Career Pathways Planning and Counseling
- Cross-Curricular Collaboration

ipdae

THE INTERACTIVE ONLINE CURRICULUM MATRIX

ADDITIONAL CURRICULUM MATRIX RESOURCES

ipdae

ABE Math Curriculum Matrix
Part 1

May 30, 2018
www.floridaipdae.org
This training event is supported with federal funds as appropriated to the Florida Department of
Education. Division of Career and Adull Education for the provision of state leadership
professional development activilies.
https://www.youtube.com/watch?v=hKs-obd0ufl floridaipdae.org

