Let's Talk the Math Talk

```
https://www.youtube.com/channel/UCWc-pdSSs-VOxPMVv4Ao7VA
https://ged.com/practice-test/en/calculator/
https://ged.com/practice-test/en/computer-demonstrator/
https://www.youtube.com/watch?v= KUGLOiZyK8
http://www.webmath.com/gpoints.html
http://www.shodor.org/interactivate/activitie
https://plot.ly/create/
http://www.shodor.org/interactivate/activitie
https://plot.ly/create/
http://dwtkns.com/pointplotter/
https://www.superbowlsquares.org/odds
```

http://virtualnerd.com/pre-algebra/geometry/points-lines-planes-angles/points-lines/line- segment-definition
http://www.essaybuilder.net/LineGraphs.html
http://fms.faribault.k12.mn.us/cms/One.aspx?portalld=3060799\&pageld
http://www.transum.org/Maths/Activity/Grap
http://fooplot.com/
https://www.desmos.com/calculator
https://www.mathsisfun.com/data/function-grapher.php
https://www.youtube.com/watch?v=00O720ZT32U
https://www.geogebra.org/m/fygAUV22
http://www.learnalberta.ca/content/memg/
http://www.mathwarehouse.com/geometry/
http://www.multiplication.com/our-blog/jen-wieber/dice-game-teaching-area-and-perimeter
https://www.illustrativemathematics.org/content-
https://www.illustrativemathematics.org/content-
http://illuminations.nctm.org/activity.aspx?id=
http://www.shodor.org/interactivate/activitie
https://www.learner.org/interactives/geometr

Can you solve the problem corresponding to the color Starburst you chose?

PINK:

Solve for x .

$$
\ln (3 x-1)+\ln 4=\ln 20
$$

RED:

Calculate the slope of the function at the given point.

$$
y=x^{3}-6 x^{2}+9 x-4 \text { at } x=2
$$

ORANGE:

Solve for x.

$$
4^{2 x+3}=1
$$

$$
\begin{aligned}
& \text { YELLOW: } \\
& \hline \mathbf{a b}=5 \\
& \mathbf{a}+\mathbf{b}=10 \\
& \mathbf{a}^{3}+\mathbf{b}^{3}=?
\end{aligned}
$$

Starburst Math Questions - KEY

PINK:
Solve for $x . \quad \ln (3 x-1)+\ln 4=\ln 20$

Combine left side into one \ln by multiplying: $\quad \ln [4(3 x-1)]=\ln 20 \quad \rightarrow \quad \ln (12 x-4)=$ $\ln 20$
If $\ln \mathrm{a}=\ln \mathrm{b}$, then $\mathrm{a}=\mathrm{b}$:
Solve for x :

$$
\begin{aligned}
& 12 x-4=20 \\
& x=2
\end{aligned}
$$

RED:

Calculate the slope of the function at the given point.

$$
y=x^{3}-6 x^{2}+9 x-4 \text { at } x=2
$$

Find the first derivative of the function:

$$
\begin{aligned}
& y^{\prime}=3 x^{2}-12 x+9 \\
& 3(2)^{2}-12(2)+9 \\
& 12-24+9=-3
\end{aligned}
$$

Plug in your value of x :
Simplify:

ORANGE:

Solve for x .

$$
4^{2 x+3}=1
$$

Anything to the power of 0 equals 1 :
Set exponent equal to 0 :
Solve for x :

$$
4^{0}=1
$$

$2 x+3=0$
$x=-3 / 2$

YELLOW:

$$
\begin{array}{ll}
\mathbf{a b}=\mathbf{5} & (a+b)^{2}=10^{2} \\
\mathbf{a}+\mathbf{b}=\mathbf{1 0} & a^{2}+2 a b+b^{2}=100 \\
\mathbf{a}^{\mathbf{3}}+\mathbf{b}^{\mathbf{3}}=\boldsymbol{?} & a^{2}+2(5)+b^{2}=100 \\
& a^{2}+b^{2}=90
\end{array}
$$

$$
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)
$$

$$
a^{3}+b^{3}=(a+b)\left(a^{2}+b^{2}-a b\right)
$$

$$
\mathrm{a}^{3}+\mathrm{b}^{3}=(10)(90-5)
$$

$$
a^{3}+b^{3}=850
$$

Skittles Probability Activity

$$
\text { Probability }=\frac{\text { Favorable Outcomes }}{\text { Possible Outcomes }}
$$

Color	Number	Probability
Red		
Orange		
Yellow		
Green		
Purple		
TOTAL		

1. Which color of Skittles has the LOWEST probability of being selected? GREATEST probability?
2. What is the probability of selecting a green OR red Skittle?
3. You pick one Skittle at random, put it back, and then pick a second Skittle. What is the probability that the first Skittle was yellow AND the second Skittle was purple?

Think About It: Are any of the probabilities from your Skittles bag unusual or out of the ordinary? Why?

