Moving Students from the Red Zone in Math

2022 Part-Time Teacher Academy

1

2
© Copyright GED Testing Service LLC. All

3

In this session, we will

- Discuss challenges that higher-level Adult Basic Education students have in mathematics
- Review strategies and activities to help students improve their basic math skills and consistency in using those skills
- Share ideas and resources

4

Understanding Skills Students Have

Low Intermediate Basic Education (4-5.9 GLE)	High Intermediate Basic Education (6-8.9 GLE)	Low Adult Secondary Education (9-10.9 GLE)
Students can perform with high accuracy all four basic math operations using whole numbers up to three digits and can identify and use all basic mathematical symbols.	Students can perform all four basic math operations with whole numbers and fractions; can determine correct math operations for solving narrative math problems and can convert fractions to decimals and decimals to fractions; and can perform basic operations on fractions.	Students can perform all basic math functions with whole numbers, decimals, and fractions; can interpret and solve simple algebraic equations, tables, and graphs and can develop own tables and graphs; and can use math in business transactions.

5

Three Score Level Indicators on GED Ready ${ }^{\circledR}$

6

Test-taker Scoring Too Close to Call

The Student's performance

- Is typically based on a test-taker's consistency in demonstrating skills, or
- May be based on the level of complexity of materials that a testtaker can handle
- Lower-performing students may be

- Successful with simpler materials and
- Less successful with those that are more complex

7

Is There An Example?

High Impact Indicator - Q4 Calculate dimensions, perimeter, circumference, and area of twodimensional figures

Skills Being Measured

- Understanding of the definition of perimeter
- Using reasoning skills to determine the value of x - Including estimation skills

A painter uses the outline of a fish on a restaurant sign. The perimeter of the outline is $40 \frac{3}{4}$ centimeters (cm).

What is the missing length, $x \mathrm{~cm}$, of the outline?
(1) $\frac{7}{8}$

- $1 \frac{3}{4}$
-3 ${ }^{\frac{1}{2}}$
- $5 \frac{1}{4}$

8

9

So...How Can You Help Students Move Out of the Red Zone?

10
© Copyright GED Testing Service LLC. All rights reserved

11

Before Diving In...

A short reminder about the importance of math skills...

Math...

- Is good for your brain
- Makes you a better problem-solver
- Is used in practically every career in some way
- Is all around you and helps you understand the world better

And then there is...

Mathematically proficient students...

- Explain to themselves the meaning of a problem and look for entry points to its solution.
- Make sense of quantities and their relationships in problem situations.
- Use assumptions, definitions, and previously established results to construct arguments.
- Apply the mathematics they know to solve problems arising in everyday life, society, and the workplace.
- Consider all available tools when solving a mathematical problem.
- Communicate precisely to others.
- Look closely to discern a pattern or structure.
- Notice if calculations are repeated and look for general methods and shortcuts.

13

Advice

> Learn How
> Students Feel and Think about Math

15

Math Journals Help Students

- Be aware of what they do and do not know
- Make use of prior knowledge
- Identify their mathematical questions
- Develop their ability to problem solve
- Monitor their own progress
- Make connections
- Communicate more precisely
- Express their feelings about math

Math Anxiety!!!!!

- Let you know what they are doing and why

Three Types of Prompts

- Affective/attitudinal prompts, which focus on how students feel
- Mathematical content prompts, which focus on what the material is about. Process prompts, which require students to explain what they are thinking and doing

One secret I have about math is... If I become better at math, I can.. My best experience with math was when...
My worst experience with math was when..

What patterns did you find in...? How do you use ... in everyday life?
Explain in your own words what .. means.
One thing I have to remember with this kind of problem is...

What would happen if you missed
a step in the problem? Why?
What decisions did you have to make to solve this type of problem?
When I see a word problem, the first thing I do is...
\qquad

17

It's Your Turn!

One secret I have about math is . ..

My best experience with math was when ...
My worst experience with math was when . .

What Can You Do?

Incorporate Writing in Math

- Math Autobiography
- Learning Log, journal
- What you did
- What you learned
- What you are not sure about
- Explain the steps, new words
- Freewriting
- Explain mathematical ideas
- Explain the details

Set the Stage for Positive Writing

- Make early activities easy
- Explain why students are writing
- Facilitate by guiding students as they learn how to think through and communicate their thoughts
- Model the process
- Allow ample time
- Provide feedback

19

21

Use Brainteasers to Develop Reasoning Ability

- Engages students' minds in a reasoning process
- Encourages students to play and have fun
- Uses humor to increase interest and motivation
- Decreases math anxiety
- Focuses on reasoning - not just the answer

> acrainteasers are therapy for the mind on

It's Your Turn!

A little boy goes shopping and purchases 12 tomatoes. On the way home, all but 9 get mushed and ruined. How many tomatoes are left in a good condition?

Nine

Eggs are $\$ 0.12$ a dozen. How many eggs can you get for a dollar?

100 eggs, at one penny each

The Diophantus Riddle
Diophantus' youth lasted one sixth of his life. He grew a beard after one twelfth more. After one seventh more of his life, he married. 5 years later, he and his wife had a son. The son lived exactly one half as long as the father,
 and Diophantus died four years after his son.

How many years did Diophantus live?
Here is an equation to reflect the several ages of Diophantus:
$(1 / 6) x+(1 / 12) x+(1 / 7) x+5+(1 / 2) x+4=x$
Solve that equation and the solution is $x=84$ years.

If at first you don't succeed...

You are standing by the duck pond with two pails. One holds 7 gallons and the other holds 3 gallons. Neither one of them has gallon markings on the side. How can you get exactly 5 gallons of water in the big pail?

25

Fill 3; dump it into 7.

Fill 3; dump it into 7, which now has six gallons in it.
Fill 3; dump one gallon into 7 (you can do this, since it makes 7 full).
The 3 now has two gallons left in it.
Empty 7 completely; pour the two gallons from 3 into 7.
Fill 3; pour it into 7.
The 7 now has five gallons in it.

27

What if the Words were Missing?

29

Do Your Students Know These Words?

Tier 2 Vocabulary Words Students May Encounter in Math

Analyze	Compare	Contrast
Demonstrate	Describe	Argument
Conclusions	Evidence	Determine
Develop	Evaluate	Explain
Identify	Infer	Draw
Distinguish	Suggest	Interpret
Organize	Illustrations	Predict

How About These Words?

Tier 3 Math Vocabulary Words

Absolute value	Additive inverse	Algorithm
Attribute	Constant	Distance formula
Exponent	Function	Dependent variable
Independent variable	Linear	Numerical expression
Profit	Property	Proportional gain
Rate of change	Strategy	Value

http://soltreemrls3.s3-website-us-west-2.amazonaws.com/marzanoresearch.com/media/documents /reproducibles/vocab-common-core/sourcelistforpartllandIIIterms.pdf

Building Vocabulary

33

What is it?

35

Math Misconceptions

1. A number with three digits is always bigger than one with two
2. When you multiply two numbers together, the answer is always bigger than both the original numbers
3. Which fraction is bigger: $1 / 3$ or $1 / 6$?
4. Common regular shapes aren't recognized for what they are unless they're upright
5. The diagonal of a square is the same length as the side?

36

Time to Test Your Math Fluency

Mathematics Test

In the following simple math problems, a plus (+) sign means to multiply, a divide $(-)$) sign means to add, a minus $(-)$ sign means to divide, and a times (x) sien means to subtract Complete the problems.

$17 \times 2=$	$8+2=$
$14+7=$	15×3
$8+2=$	$14-7=$
$9+11=$	$6 \times 5=$
$4 \times 3=$	$8+3=$
$6 \div 2=$	$7 \times 2=$
$9-3=$	$9+2=$
$7 \times 4=$	$8-4=$
$4+4=$	$9+6=$
$8-4=$	$1 \div 1=$
$12 \times 2=$	$8 \times 7=$
$20-1=$	$13-1=$
$9-1=$	$16-4=$
$5+6=$	$9 \times 2=$
$2 \times 1=$	$9 \div 9=$

37

Misconceptions about Order of Operations

Misconception 1 - All multiplication should happen before division

Incorrect	Correct
$12 \div 3 \times 4$	$12 \div 3 \times 4$
$12 \div 12$	4×4
1	16

Groupings () \{\}[]
Exponents n²
Multiply/Divide $\div 1 \times$ (LEFT TO RIGHT)
Subtract/Add +/(LEFT TO RIGHT)

Misconception 2 - All addition comes before subtraction.

Incorrect	Correct
$4+10-5+8$	$4+10-5+8$
$14-13$	$14-5+8$
1	$9+8$
	17

38

39

C-R-A - Essential for Understanding

Concrete	Representational	Abstract
Students manipulate handson, concrete materials	Students draw and observe diagrams, or watch the teacher touching and moving hands-on materials	Numbers and mathematical symbols
		$\times 4$ Patterns 4 8 12 16 24 28 32 36 40 8×5 $45 \div 5$ $4 \times 2) \times 5$ $(50-5) \div 5$ $4 \times(2 \times 5)$ $(50 \div 5)-(5 \div 5)$ 4×10 $10-1$ 40 9

41

Number Operations and Number Sense

Teaching Fractions

- Let students use physical materials to create fractional amounts (draw, fold, cut, shade) to explore and develop concepts
- Use fraction words: two-thirds of a candy bar, a third + a third
- Relate unknown fractions to well known fractions, such as 1/2 or 1/4:
- It's more than a fourth, but less than a half.
- It's smaller than a quarter
- Use language that emphasizes relationship of fractional quantity to unit instead of number of pieces
- "How many of this piece would fit into the whole candy bar?" instead of "How many pieces is the candy bar cut into?"
- Relate fractions to real-life entities, such as money

43

"Pie" Model

Experts in visual literacy say that comparing quantities in pie charts is difficult because most people think linearly. It is easier to compare along a straight line than compare pie slices.
askoxford.com

Specialists also suggest refraining from using more than one pie chart for comparison.

45

Fraction Chart

Which is more, $3 / 4$ or $4 / 5$?

Simplify Fractions

1	2	3	4	5	6	7	8	9	10
2	4	6	8	10	12	14	16	18	20
3	6	9	12	15	18	21	24	27	30
4	8	12	16	20	24	28	32	36	40
5	10	15	20	25	30	35	40	45	50
6	12	18	24	30	36	42	48	54	60
7	14	21	28	35	42	49	56	63	70
8	16	24	32	40	48	56	64	72	80
9	18	27	36	45	54	63	72	81	90
10	20	30	40	50	60	70	80	90	100

The fraction 4/8 can be reduced on the multiplication table as $1 / 2$

47

1	2	3	4	5	6	7	8	9	10	11	12
2	4	6	8	10	12	Squares \& Square Roots					
3	6	9	12	15	18						
4	8	12	16	20	24						
5	10	15	20	25	30	35		45	50	55	60
6	12	18	24	30	36	4	48	54	60	66	72
7	14	21	28	35	42	49	56	63	70	77	84
8	16	24	32	40	48	56	64	72	80	88	96
9	18	27	36	45	54	63	72	81	90	99	108
10	20	30	40	50	60	70	80	90	100	110	120
11	22	33	44	55	66	77	88	99	110	121	132
12	24	36	48	60	72	84	96	108	120	132	144

Percents, Ratios, and Proportions - What's the Problem?

- Percent means "out of 100"

- Ratio describes the part to part relationship
- Proportion describes the part to whole relationship

49

Percents

Percent means per hundred or out of 100.

Percents

Percent means per hundred or out of 100.

51

Percents

Percent means per hundred or out of 100.

Number Operations and Number Sense

Quick Math

A toaster that usually sells for $\$ 40$ is on sale for 5% off. If 5% sales tax is then added to the sales price, what is the amount you would pay for the toaster?

53

Ratio and Proportion - Use Graphic Organizers

Ratio Problem

Base

Provide a "Concrete" Example

Ratios can have more than two numbers
For example concrete is made by mixing cement, sand, stones and water.

A typical mix of cement, sand and stones is written as a ratio, such as $1: 2: 6$.

We can multiply all values by the same amount and still have the same ratio.
$10: 20: 60$ is the same as $1: 2: 6$
So when we use 10 buckets of cement, we should use 20 of sand and 60 of stones.
https://www.mathsisfun.com/algebra/proportions.html

55

Provide a "Concrete" Example

```
Example: you have just put 12 buckets of stones into a mixer, how much cement and how much sand should you add to make a 1:2:6 mix?
Let us lay it out in a table to make it clearer:
```



```
You have 12 buckets of stones but the ratio says 6 .
That is OK, you simply have twice as many stones as the number in the ratio ... so you need twice as much of everything to keep the ratio.
Here is the solution:
```



```
And the ratio \(2: 4: 12\) is the same as \(1: 2: 6\) (because they show the same relative sizes)
So the answer is: add 2 buckets of Cement and 4 buckets of Sand. (You will also need water and a lot of stirring....)
```


And... Don't Forget Probability!

Back to Basics

To find a basic probability with all outcomes equally likely, we use a fraction:

> number of favorable outcomes total number of possible outcomes

- One event, all outcomes equally likely 0000000000

What is the chance that you will draw a red marble?

57

Getting Down to Basics with Algebraic Reasoning

What About Algebra?

Key Differences Between Likely to Pass and the Red Zone

Students

- Have a much smaller skill repertoire, e.g.
- Tend to be able to work with equalities but not inequalities
- Tend to have very weak graphing skills
- Are far less able to apply math skills to real-world situations or interpret real-world skills mathematically
- Are far less consistent in their performance (likely to be "hit or miss")

59

Remember ...

- Arithmetic is doing something to numbers to get an answer.
- Algebra is exploring the relationships between numbers.

60

Symbolic Notation

Sign	Arithmetic	Algebra
$=$ (equal)	. . And the answer is	Equivalence between two quantities
+	Addition operation	Positive number
-	Subtraction operation	Negative number

61

Algebraic Misconceptions

1) $a \cdot a \cdot a \cdot a=4 a$
2) $3 a \cdot 2 b=5 a b$
3) $c \cdot c=2 c$
4) $5 y-y=5$
5) $3(2 k+3)=6 k+6$

62

63

64

Our Students Need...

65

66
© Copyright GED Testing Service LLC. All rights reserved

Questions? Concerns?

67

For questions and comments, send an email to rcruz@bucketPD.com.

Ronald Cruz
National Trainer
GED Testing Service

Thank you!

Communicate with GED Testing Service ${ }^{\circledR}$ communications@ged.com

68
© Copyright GED Testing Service LLC. All

