

Grasping GED® Higher Order Math Concepts for Deeper Understanding

Information, Resources, and Strategies for the Classroom

Table of Contents

Rules of Exponents	3
Square Root Tricks	3
Cube and Cube Root Exercise	5
Cube and Cube Root Tricks	5
Undefined Value Over the Set of Real Numbers	6
Imaginary Numbers	6
Anchor Chart: Surface Area of Right Triangular Prisms	7
Real World Problems with Inequalities	7
The Concept of Slope	8
Forms of Linear Equation	8
Anchor Chart: Finding Slope	9
Anchor Chart: Interpreting Slopes in Distance-Time Graphs	9
Resources from the World Wide Web	10

[©] Copyright 2019 GED Testing Service LLC. All rights reserved. GED® and GED Testing Service® are registered trademarks of the American Council on Education (ACE). They may not be used or reproduced without the express written permission of GED or GED Testing Service. The GED® and GED Testing Service® brands are administered by GED Testing Service LLC under license from the American Council on Education.

Rules of Exponents

Name	Rule	Example
Product	$a^m \cdot a^n = a^{m+n}$	$x^3 \cdot x^4 = x^{3+4} = x^7$
Quotient	$a^m \div a^n = a^{m-n}$	$p^5 \div p^2 = p^{5-2} = p^3$
Power of a Power	$(a^m)^n = a^{mn}$	$(z^3)^2 = z^{3 \cdot 2} = z^6$
Power of a Product	$(ab)^m = a^m b^m$	$(3y)^2 = 3^2y^2 = 9y^2$
Power of a Quotient	$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$	$\left(\frac{5}{3}\right)^2 = \frac{5^2}{3^2} = \frac{25}{9}$
Zero Exponent	$a^0 = 1$	$x^0 = 1$; $6^0 = 1$; $0^0 = 1$
Negative Exponent	$a^{-m} = \frac{1}{a^m}$	$b^{-3} = \frac{1}{b^3}$; $5^{-2} = \frac{1}{5^2}$
Fractional Exponent	$a^{\frac{m}{n}} = \sqrt[n]{a^m}$	$4^{\frac{3}{2}} = \sqrt[2]{4^3} = \sqrt{64} = 8$

Square Root Tricks

Combining of Similar Radicals

$$a\sqrt{b} + a\sqrt{b} = (a+a)\sqrt{b}$$
$$a\sqrt{b} - c\sqrt{b} = (a-c)\sqrt{b}$$

Example 1:
$$2\sqrt{5} + 6\sqrt{5} = (2+6)\sqrt{5} = 8\sqrt{5}$$

Example 2:
$$3\sqrt{2} - 5\sqrt{2} = (3-5)\sqrt{2} = -2\sqrt{2}$$

Splitting Products

$$\sqrt{x^3} = \sqrt{x^2 \cdot x} = \sqrt{x^2} \sqrt{x} = x\sqrt{x}$$

$$\sqrt{20} = \sqrt{4 \cdot 5} = \sqrt{4} \cdot \sqrt{5} = 2\sqrt{5}$$

Splitting Quotients

$$\sqrt{\frac{x^2}{y^2}} = \frac{\sqrt{x^2}}{\sqrt{y^2}} = \frac{x}{y} \qquad \qquad \sqrt{\frac{4}{25}} = \frac{\sqrt{4}}{\sqrt{25}} = \frac{2}{5}$$

Square and Square Root Exercise

Simplify
$$2\sqrt{2}(2\sqrt{3}+3\sqrt{3})$$

Simplify
$$3\sqrt{24x^3}$$

Simplify
$$\left(-4\sqrt{2}\right)^2$$

Simplify
$$\sqrt{\frac{12x^2}{4}}$$

Cube and Cube Root Exercise

Simplify
$$2\sqrt{2}(2\sqrt{3} + 3\sqrt{3})$$

Simplify
$$3\sqrt{24x^3}$$

Simplify
$$\left(-4\sqrt{2}\right)^2$$

Simplify
$$\sqrt{\frac{12x^2}{4}}$$

Cube and Cube Root Tricks

Combining of Similar Radicals

$$a\sqrt[3]{b} + a\sqrt[3]{b} = (a+a)\sqrt[3]{b}$$

$$a\sqrt[3]{b} - c\sqrt[3]{b} = (a-c)\sqrt[3]{b}$$

Example 1:
$$2\sqrt[3]{5} + 6\sqrt[3]{5} = (2+6)\sqrt[3]{5} = 8\sqrt[3]{5}$$

Example 2:
$$3\sqrt[3]{2} - 5\sqrt[3]{2} = (3-5)\sqrt[3]{2} = -2\sqrt[3]{2}$$

Splitting Products

$$\sqrt[3]{x^4} = \sqrt[3]{x^3 \cdot x} = \sqrt[3]{x^3} \cdot \sqrt[3]{x} = x\sqrt[3]{x}$$

$$\sqrt[3]{16} = \sqrt[3]{8 \cdot 2} = \sqrt[3]{8} \cdot \sqrt[3]{2} = 2\sqrt[3]{2}$$

Splitting Quotients

$$\sqrt[3]{\frac{x^3}{y^3}} = \frac{\sqrt[3]{x^3}}{\sqrt[3]{y^3}} = \frac{x}{y}$$

$$\sqrt[3]{\frac{x^3}{y^3}} = \frac{\sqrt[3]{x^3}}{\sqrt[3]{y^3}} = \frac{x}{y}$$

$$\sqrt[3]{\frac{27}{125}} = \frac{\sqrt[3]{27}}{\sqrt[3]{125}} = \frac{3}{5}$$

Undefined Value Over the Set of Real Numbers

There are two types of expressions that are undefined over the set of real numbers:

 Fractions with zero in the denominator (or an expression equivalent to zero)

Examples:
$$\frac{-3}{0}$$
; $\frac{0}{0}$; $\frac{x-3}{x+3}$, where $x=-3$

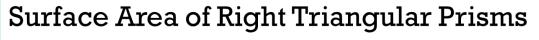
 Square roots of negative numbers (or expressions which, when simplified, result in negative numbers).

Examples:
$$\sqrt{-1}$$
; $x^2 + 1 = 0$; $\sqrt{-3x^2}$; $\sqrt{x^3 - 2}$, where $x = -1$

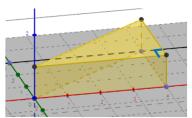
Imaginary Numbers

Try squaring numbers to see fi we can get a negative result.

$$1^2 = 1$$
 $0^2 = 0$ $(-2)^2 = 4$ $(0.2)^2$

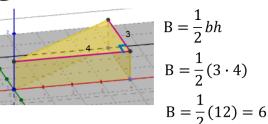

"Imagine" there is such a number. Let's call this number *i* for imaginary. Then we can do this...

$$i^2 = i \cdot i = -1$$


"**Imagine**" there is such a number, called *i* for imaginary. Then we can also do this...

$$\sqrt{i^2} = \sqrt{i \cdot i} = \sqrt{-1}$$
$$i = \sqrt{-1}$$

Anchor Chart: Surface Area of Right Triangular Prisms

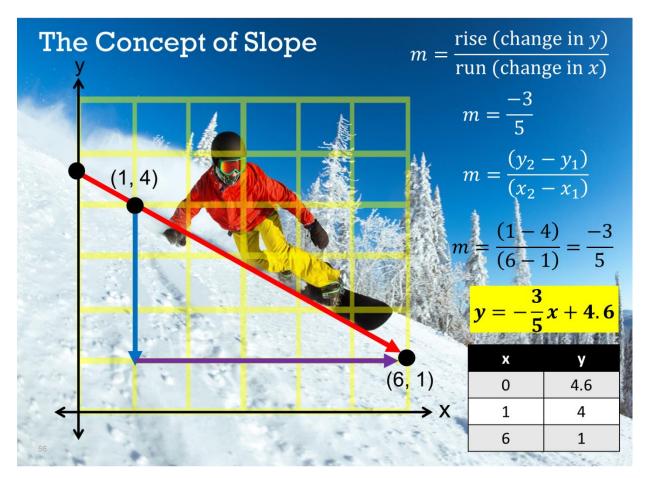

SA = ph + 2B

1 Perimeter of the Base and Height

p and h p = (3 + 4 + 5) p = 12 h = 1

2 Area of the Base

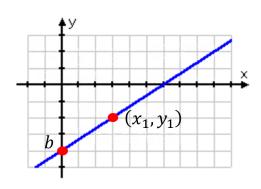
3 Solve SA = ph + 2B SA = 12 + 12SA = (12)(1) + 2(6) SA = 24


SA = (12)(1) + 2(6) SA = 24

Real World Problems with Inequalities

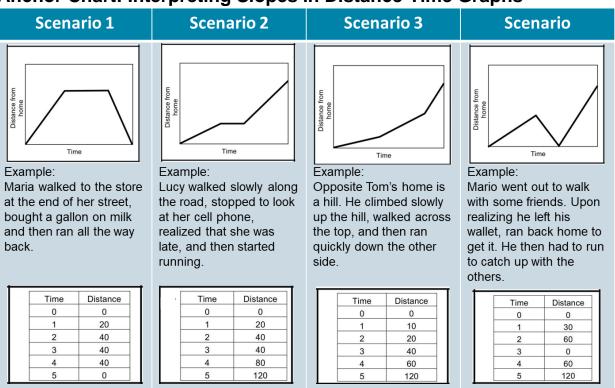
Instructions: Solve the problem.

Annie is planning a business meeting for her company. She has a budget of \$1,325 for renting a meeting room at a local hotel and providing lunch. She expects 26 people to attend the meeting. The cost of renting the meeting room is \$270. Write an inequality to show how to find the amount, x, Annie can spend on lunch for each person?


The Concept of Slope

Forms of Linear Equation

Forms of Linear Equations	Equations
Slope-Intercept Form	y = mx + b
Point-Slope Form	$y - y_1 = m(x - x_1)$
Standard Form	cx + dy = e


$$m= {\sf slope}$$

 $b= {\sf y-intercept}$
 $(x_1,y_1)= {\sf a point on the line}$
 c,d and e are constants

Anchor Chart: Finding Slope

T-Chart	Slope-Intercept	Standard	Graph
Use the slope formula. $m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$	Locate m in the equation. $y = mx + b$	cx + dy = e Transform equation to slope-intercept form and locate m in the equation.	3 2 1 X
Example:	Example:	Example:	1 2 3
x y 1 -9 3 -6 5 -3	y = 3x - 4 $y = mx + b$	3x + 9y = 4 $-3x - 3x$ $9y = -3x + 4$	Locate two points on the graph, then use the slope formula. Example: (0.2) and(2,3) $(v_2 - v_1)$
$m = \frac{-3 - (-9)}{5 - 1}$ 6 3	m = 3	$\frac{9y}{9} = \frac{-3x}{9} + \frac{4}{9}$ $y = \frac{-3}{9}x + \frac{4}{9}$	$m = \frac{(y_2 - y_1)}{(x_2 - x_1)}$ $m = \frac{3 - 2}{2 - 0}$
$m = \frac{1}{4} = \frac{1}{2}$		$m = \frac{-3}{}$	$m - \frac{1}{2}$

Anchor Chart: Interpreting Slopes in Distance-Time Graphs

Resources from the World Wide Web

Build Your Own Right Triangular Prism (GeoGebra) https://www.geogebra.org/m/j6xVky5C

Build Your Own Rectangular Pyramid (GeoGebra) https://www.geogebra.org/m/r5RXbuby

Build Your Own Sphere (GeoGebra) https://www.geogebra.org/m/UPgkkdzZ

Florida IPDAE. Lesson plans for both ABE and GED[®]-level mathematics developed by Florida adult educators. <u>www.floridaipdae.org</u>

Fractions | Adding and Subtracting Fractions | Dividing and Multiplying Fractions by MathTricks https://www.facebook.com/reel/657776426087451/

GED Calculator-Prohibited Indicators

https://ged.com/wp-content/uploads/Math-Skills-Calculator-Prohibited-2.pdf

GED Calculator Reference Guide

https://ged.com/wp-content/uploads/calculator_reference_guide.pdf

GED Mathematics Formula Sheet and Explanations

https://ged.com/wp-content/uploads/math_formula_sheet-1.pdf

GED Teaching Resources https://ged.com/educators_admins/teaching/teaching_resources/

GeoGebra App Download Page https://www.geogebra.org/download

Graphing Riddle http://exponentialcurve.blogspot.com/2010/04/some-funish-worksheets.html

Slope-Intercept Form Battleship http://iisanumber.blogspot.com/2013/02/slope-intercept-form-battleship.html

The Math Learning Center Number Line App

https://apps.mathlearningcenter.org/number-line/

Why Can't You Divide by Zero (Video) https://www.youtube.com/watch?v=NKmGVE85GUU